Category Archives: Academic papers

WEIS 2021 – Liveblog

I’ll be trying to liveblog the twentieth Workshop on the Economics of Information Security (WEIS), which is being held online today and tomorrow (June 28/29). The event was introduced by the co-chairs Dann Arce and Tyler Moore. 38 papers were submitted, and 15 accepted. My summaries of the sessions of accepted papers will appear as followups to this post; there will also be a panel session on the 29th, followed by a rump session for late-breaking results. Videos of the sessions will be linked here in a few days.

Cybercrime gangs as tech startups

In our latest paper, we propose a better way of analysing cybercrime.

Crime has been moving online, like everything else, for the past 25 years, and for the past decade or so it’s accounted for more than half of all property crimes in developed countries. Criminologists have tried to apply their traditional tools and methods to measure and understand it, yet even when these research teams include technologists, it always seems that there’s something missing. The people who phish your bank credentials are just not the same people who used to burgle your house. They have different backgrounds, different skills and different organisation.

We believe a missing factor is entrepreneurship. Cyber-crooks are running tech startups, and face the same problems as other tech entrepreneurs. There are preconditions that create the opportunity. There are barriers to entry to be overcome. There are pathways to scaling up, and bottlenecks that inhibit scaling. There are competitive factors, whether competing crooks or motivated defenders. And finally there may be saturation mechanisms that inhibit growth.

One difference with regular entrepreneurship is the lack of finance: a malware gang can’t raise VC to develop a cool new idea, or cash out by means on an IPO. They have to use their profits not just to pay themselves, but also to invest in new products and services. In effect, cybercrooks are trying to run a tech startup with the financial infrastructure of an ice-cream stall.

We have developed this framework from years of experience dealing with many types of cybercrime, and it appears to prove a useful way of analysing new scams, so we can spot those developments which, like ransomware, are capable of growing into a real problem.

Our paper Silicon Den: Cybercrime is Entrepreneurship will appear at WEIS on Monday.

Security engineering and machine learning

Last week I gave my first lecture in Edinburgh since becoming a professor there in February. It was also the first talk I’ve given in person to a live audience since February 2020.

My topic was the interaction between security engineering and machine learning. Many of the things that go wrong with machine-learning systems were already familiar in principle, as we’ve been using Bayesian techniques in spam filters and fraud engines for almost twenty years. Indeed, I warned about the risks of not being able to explain and justify the decisions of neural networks in the second edition of my book, back in 2008.

However the deep neural network (DNN) revolution since 2012 has drawn in hundreds of thousands of engineers, most of them without this background. Many fielded systems are extremely easy to break, often using tricks that have been around for years. What’s more, new attacks specific to DNNs – adversarial samples – have been found to exist for pretty well all models. They’re easy to find, and often transferable from one model to another.

I describe a number of new attacks and defences that we’ve discovered in the past three years, including the Taboo Trap, sponge attacks, data ordering attacks and markpainting. I argue that we will usually have to think of defences at the system level, rather than at the level of individual components; and that situational awareness is likely to play an important role.

Here now is the video of my talk.

A new way to detect ‘deepfake’ picture editing

Common graphics software now offers powerful tools for inpainting – using machine-learning models to reconstruct missing pieces of an image. They are widely used for picture editing and retouching, but like many sophisticated tools they can also be abused. They can remove someone from a picture of a crime scene, or remove a watermark from a stock photo. Could we make such abuses more difficult?

We introduce Markpainting, which uses adversarial machine-learning techniques to fool the inpainter into making its edits evident to the naked eye. An image owner can modify their image in subtle ways which are not themselves very visible, but will sabotage any attempt to inpaint it by adding visible information determined in advance by the markpainter.

One application is tamper-resistant marks. For example, a photo agency that makes stock photos available on its website with copyright watermarks can markpaint them in such a way that anyone using common editing software to remove a watermark will fail; the copyright mark will be markpainted right back. So watermarks can be made a lot more robust.

In the fight against fake news, markpainting news photos would mean that anyone trying to manipulate them would risk visible artefacts. So bad actors would have to check and retouch photos manually, rather than trying use inpainting tools to automate forgery at scale.

This paper has been accepted at ICML.

Robots, manners and stress

Humans and other animals have evolved to be aware of whether we’re under threat. When we’re on safe territory with family and friends we relax, but when we sense that a rival or a predator might be nearby, our fight-or-flight response kicks in. Situational awareness is vital, as it’s just too stressful to be alert all the time.

We’ve started to realise that this is likely to be just as important in many machine-learning applications. Take as an example machine vision in an automatic driver assistance system, whose goal is automatic lane keeping and automatic emergency braking. Such systems use deep neural networks, as they perform way better than the alternatives; but they can be easily fooled by adversarial examples. Should we worry? Sure, a bad person might cause a car crash by projecting a misleading image on a motorway bridge – but they could as easily steal some traffic cones from the road works. Nobody sits up at night worrying about that. But the car industry does actually detune vision systems from fear of deceptive attacks!

We therefore started a thread of research aimed at helping machine-learning systems detect whether they’re under attack. Our first idea was the Taboo Trap. You raise your kids to observe social taboos – to behave well and speak properly – and yet once you send them to school they suddenly know words that would make your granny blush. The taboo violation shows they’ve been exposed to ‘adversarial inputs’, as an ML engineer would call them. So we worked out how to train a neural network to avoid certain taboo values, both of outputs (forbidden utterances) and intermediate activations (forbidden thoughts). The taboos can be changed every time you retrain the network, giving the equivalent of a cryptographic key. Thus even though adversarial samples will always exist, you can make them harder to find; an attacker can’t just find one that works against one model of car and use it against every other model. You can take a view, based on risk, of how many different keys you need.

We then showed how you can also attack the availability of neural networks using sponge examples – inputs designed to soak up as much energy, and waste as much time, as possible. An alarm can be simpler to build in this case: just monitor how long your classifier takes to run.

Are there broader lessons? We suspect so. As robots develop situational awareness, like humans, and react to real or potential attacks by falling back to a more cautious mode of operation, a hostile environment will cause the equivalent of stress. Sometimes this will be deliberate; one can imagine constant low-level engagement between drones at tense national borders, just as countries currently probe each others’ air defences. But much of the time it may well be a by-product of poor automation design coupled with companies hustling aggressively for consumers’ attention.

This suggests a missing factor in machine-learning research: manners. We’ve evolved manners to signal to others that our intent is not hostile, and to negotiate the many little transactions that in a hostile environment might lead to a tussle for dominance. Yet these are hard for robots. Food-delivery robots can become unpopular for obstructing and harassing other pavement users; and one of the show-stoppers for automated driving is the difficulty that self-driving cars have in crossing traffic, or otherwise negotiating precedence with other road users. And even in the military, manners have a role – from the chivalry codes of medieval knights to the more modern protocols whereby warships and warplanes warn other craft before opening fire. If we let loose swarms of killer drones with no manners, conflict will be more likely.

Our paper Situational Awareness and Machine Learning – Robots, Manners and Stress was invited as a keynote for two co-located events: IEEE CogSIMA and the NATO STO SCI-341 Research Symposium on Situation awareness of Swarms and Autonomous systems. We got so many conflicting demands from the IEEE that we gave up on making a video of the talk for them, and our paper was pulled from their proceedings. However we decided to put the paper online for the benefit of the NATO folks, who were blameless in this matter.

COVID-19 test provider websites and Cybersecurity: COVID briefing #22

This week’s COVID briefing paper (COVIDbriefing-22.pdf) resumes the Cybercrime Centre’s COVID briefing series, which began in July 2020 with the aim of sharing short on-going updates on the impacts of the pandemic on cybercrime.

The reason for restarting this series is a recent personal experience while navigating through the government’s requirements on COVID-19 testing for international travel. I observed great variation in the quality of website design and cannot help but put on my academic hat to report on what I found.

The quality of some websites is so poor that it hard to distinguish them from fraudulent sites — that is they have many of the features and characteristics that consumers have been warned to pay attention to. Compounded with the requirement to provide personally identifiable information there is a risk that fraudulent sites will indeed spring up and it will be unsurprising if consumers are fooled.

The government needs to set out minimum standards for the websites of firms that they approve to provide COVID-19 testing — especially with the imminent growth in demand that will come as the UK’s travel rules are eased.

Cybercrime is (still) (often) boring

Depictions of cybercrime often revolve around the figure of the lone ‘hacker’, a skilled artisan who builds their own tools and has a deep mastery of technical systems. However, much of the work involved is now in fact more akin to a deviant customer service or maintenance job. This means that exit from cybercrime communities is less often via the justice system, and far more likely to be a simple case of burnout.

Continue reading Cybercrime is (still) (often) boring

Data ordering attacks

Most deep neural networks are trained by stochastic gradient descent. Now “stochastic” is a fancy Greek word for “random”; it means that the training data are fed into the model in random order.

So what happens if the bad guys can cause the order to be not random? You guessed it – all bets are off. Suppose for example a company or a country wanted to have a credit-scoring system that’s secretly sexist, but still be able to pretend that its training was actually fair. Well, they could assemble a set of financial data that was representative of the whole population, but start the model’s training on ten rich men and ten poor women drawn from that set – then let initialisation bias do the rest of the work.

Does this generalise? Indeed it does. Previously, people had assumed that in order to poison a model or introduce backdoors, you needed to add adversarial samples to the training data. Our latest paper shows that’s not necessary at all. If an adversary can manipulate the order in which batches of training data are presented to the model, they can undermine both its integrity (by poisoning it) and its availability (by causing training to be less effective, or take longer). This is quite general across models that use stochastic gradient descent.

This work helps remind us that computer systems with DNN components are still computer systems, and vulnerable to a wide range of well-known attacks. A lesson that cryptographers have learned repeatedly in the past is that if you rely on random numbers, they had better actually be random (remember preplay attacks) and you’d better not let an adversary anywhere near the pipeline that generates them (remember injection attacks). It’s time for the machine-learning community to carefully examine their assumptions about randomness.

Three Paper Thursday: Subverting Neural Networks via Adversarial Reprogramming

This is a guest post by Alex Shepherd.

Five years after Szegedy et al. demonstrated the capacity for neural networks to be fooled by crafted inputs containing adversarial perturbations, Elsayed et al. introduced adversarial reprogramming as a novel attack class for adversarial machine learning. Their findings demonstrated the capacity for neural networks to be reprogrammed to perform tasks outside of their original scope via crafted adversarial inputs, creating a new field of inquiry for the fields of AI and cybersecurity.

Their discovery raised important questions regarding the topic of trustworthy AI, such as what the unintended limits of functionality are in machine learning models and whether the complexity of their architectures can be advantageous to an attacker. For this Three Paper Thursday, we explore the three most eminent papers concerning this emerging threat in the field of adversarial machine learning.

Adversarial Reprogramming of Neural Networks, Gamaleldin F. Elsayed, Ian Goodfellow, and Jascha Sohl-Dickstein, International Conference on Learning Representations, 2018.

In their seminal paper, Elsayed et al. demonstrated their proof-of-concept for adversarial reprogramming by successfully repurposing six pre-trained ImageNet classifiers to perform three alternate tasks via crafted inputs containing adversarial programs. Their threat model considered an attacker with white-box access to the target models, whose objective was to subvert the models by repurposing them to perform tasks they were not originally intended to do. For the purposes of their hypothesis testing, adversarial tasks included counting squares and classifying MNIST digits and CIFAR-10 images.
Continue reading Three Paper Thursday: Subverting Neural Networks via Adversarial Reprogramming