Robots, manners and stress

Humans and other animals have evolved to be aware of whether we’re under threat. When we’re on safe territory with family and friends we relax, but when we sense that a rival or a predator might be nearby, our fight-or-flight response kicks in. Situational awareness is vital, as it’s just too stressful to be alert all the time.

We’ve started to realise that this is likely to be just as important in many machine-learning applications. Take as an example machine vision in an automatic driver assistance system, whose goal is automatic lane keeping and automatic emergency braking. Such systems use deep neural networks, as they perform way better than the alternatives; but they can be easily fooled by adversarial examples. Should we worry? Sure, a bad person might cause a car crash by projecting a misleading image on a motorway bridge – but they could as easily steal some traffic cones from the road works. Nobody sits up at night worrying about that. But the car industry does actually detune vision systems from fear of deceptive attacks!

We therefore started a thread of research aimed at helping machine-learning systems detect whether they’re under attack. Our first idea was the Taboo Trap. You raise your kids to observe social taboos – to behave well and speak properly – and yet once you send them to school they suddenly know words that would make your granny blush. The taboo violation shows they’ve been exposed to ‘adversarial inputs’, as an ML engineer would call them. So we worked out how to train a neural network to avoid certain taboo values, both of outputs (forbidden utterances) and intermediate activations (forbidden thoughts). The taboos can be changed every time you retrain the network, giving the equivalent of a cryptographic key. Thus even though adversarial samples will always exist, you can make them harder to find; an attacker can’t just find one that works against one model of car and use it against every other model. You can take a view, based on risk, of how many different keys you need.

We then showed how you can also attack the availability of neural networks using sponge examples – inputs designed to soak up as much energy, and waste as much time, as possible. An alarm can be simpler to build in this case: just monitor how long your classifier takes to run.

Are there broader lessons? We suspect so. As robots develop situational awareness, like humans, and react to real or potential attacks by falling back to a more cautious mode of operation, a hostile environment will cause the equivalent of stress. Sometimes this will be deliberate; one can imagine constant low-level engagement between drones at tense national borders, just as countries currently probe each others’ air defences. But much of the time it may well be a by-product of poor automation design coupled with companies hustling aggressively for consumers’ attention.

This suggests a missing factor in machine-learning research: manners. We’ve evolved manners to signal to others that our intent is not hostile, and to negotiate the many little transactions that in a hostile environment might lead to a tussle for dominance. Yet these are hard for robots. Food-delivery robots can become unpopular for obstructing and harassing other pavement users; and one of the show-stoppers for automated driving is the difficulty that self-driving cars have in crossing traffic, or otherwise negotiating precedence with other road users. And even in the military, manners have a role – from the chivalry codes of medieval knights to the more modern protocols whereby warships and warplanes warn other craft before opening fire. If we let loose swarms of killer drones with no manners, conflict will be more likely.

Our paper Situational Awareness and Machine Learning – Robots, Manners and Stress was invited as a keynote for two co-located events: IEEE CogSIMA and the NATO STO SCI-341 Research Symposium on Situation awareness of Swarms and Autonomous systems. We got so many conflicting demands from the IEEE that we gave up on making a video of the talk for them, and our paper was pulled from their proceedings. However we decided to put the paper online for the benefit of the NATO folks, who were blameless in this matter.

Leave a Reply

Your email address will not be published.